

Suez University Faculty of Petroleum and Mining Engineering Petroleum Exploration and Production Engineering Program

Data Regression

Lecture 9 – Monday April 10, 2017

Outline

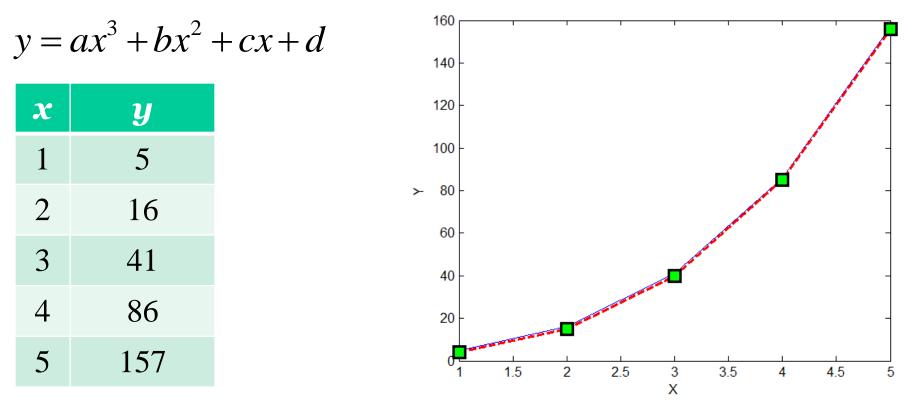
- Data Regression
- Matlab Interpolation and Curve Fitting
- Example

Outline

Data Regression

- Matlab Interpolation and Curve Fitting
- Example

Regression analysis is a statistical process for **estimating the relationships** among variables.

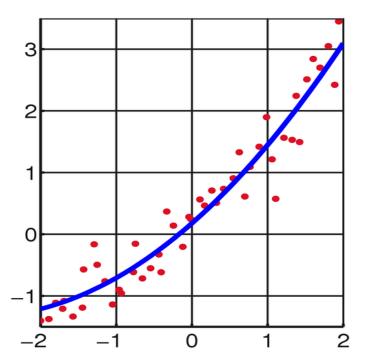

Regression models involve the following variables:

- The **independent variables**, X.
- The **dependent variable**, Y.
- The **unknown parameters**, denoted as β , which may represent a scalar or a vector.

A **regression model** relates Y to a function of X and β .

 $Y \approx f(X,\beta)$

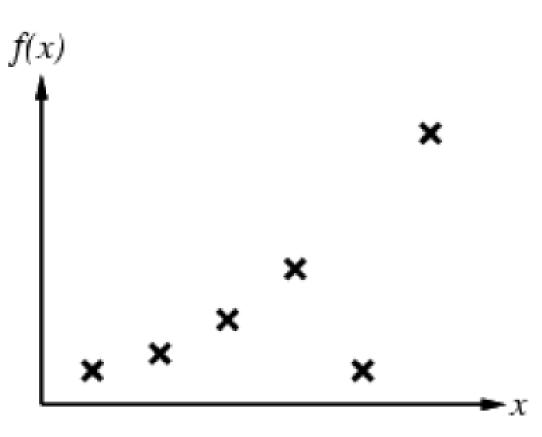
- In the curve-fitting problem, we would like to **fit a polynomial** to a given set of data points.
- Given the set of data points in the shown table and assuming we want to fit a 3rd degree polynomial to these data points.

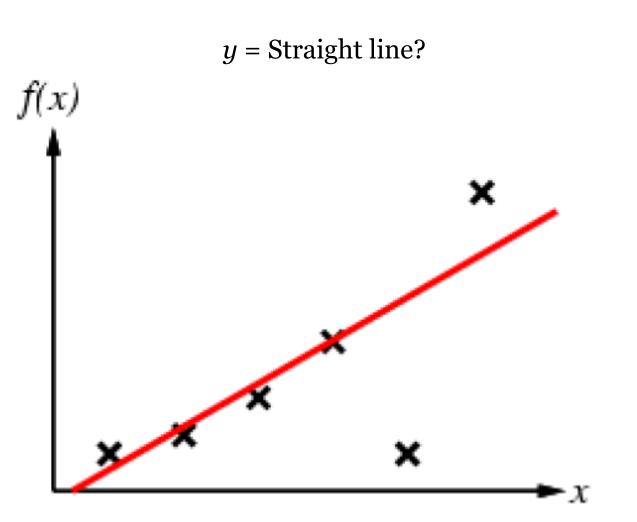


Least squares of errors

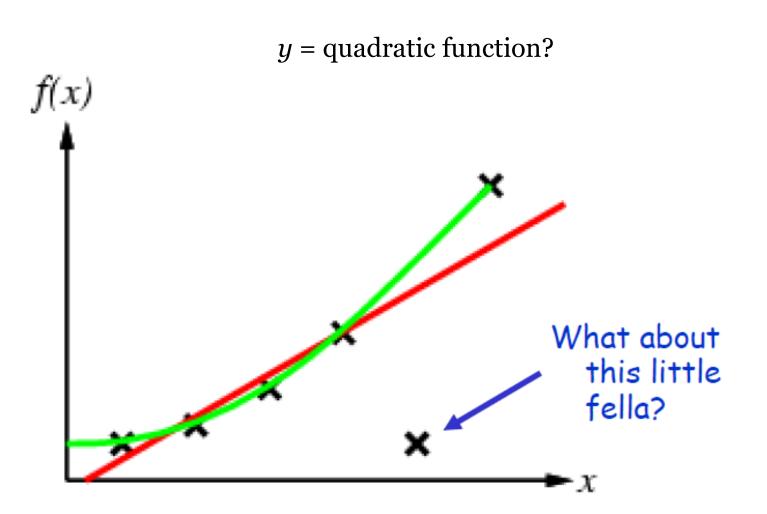
$$\min f = \min \sum_{i=1}^{\# \text{ of points}} (y - y_{desired})^2$$

Note: In curve-fitting, the best fit in the **least-squares** sense minimizes the sum of squared residuals, a residual being the difference between an observed value and the fitted value provided by a model.

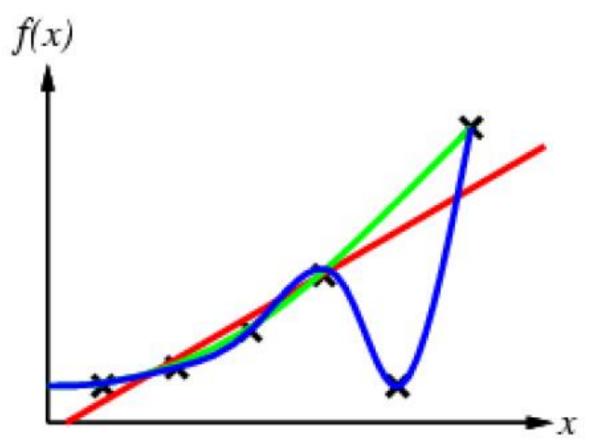

Source: Wikipedia


Curve fitting (regression)

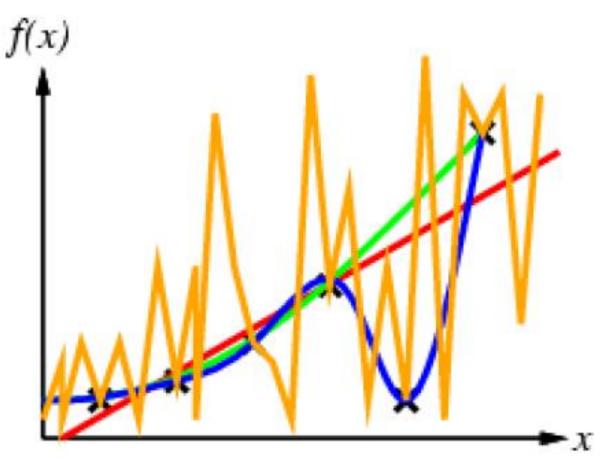
Given: *x* = Input data point (a training example)


Required: $y \approx f(x)$

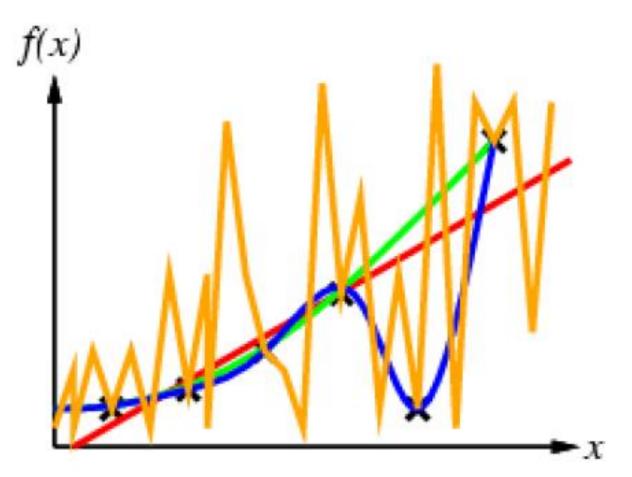
Curve fitting (regression)



Curve fitting (regression)


Curve fitting (regression)

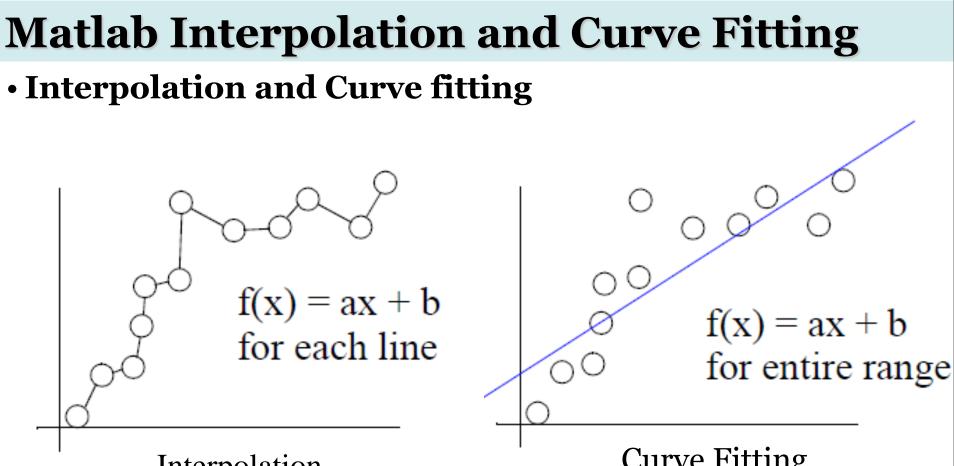
What about a function that satisfies all!


Curve fitting (regression)

But so does this one...

Curve fitting (regression)

But so does this one...

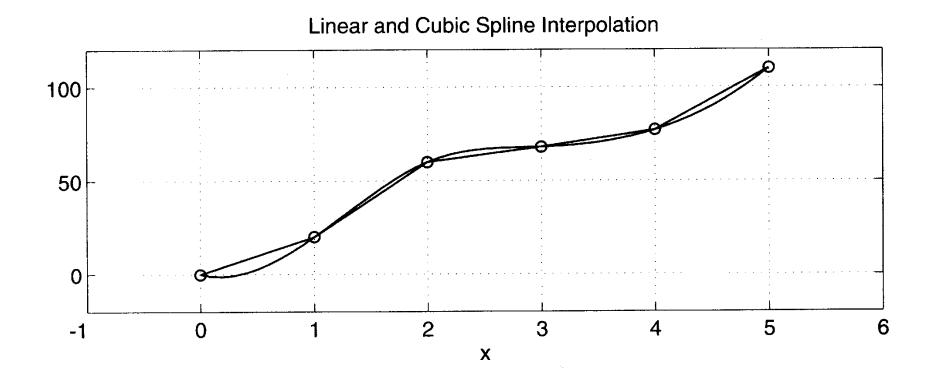


Outline

Data Regression

Matlab Interpolation and Curve Fitting

• Example


Interpolation

Curve Fitting

If data is reliable, we can plot it and connect the dots This is piece-wise, linear interpolation

Capturing the trend in the data by assigning a single function across the entire range

We present two types of interpolation-linear interpolation and cubic-spline interpolation.

Linear Interpolation

One of the most common techniques for estimating data between two given data points is linear interpolation.

interp1(x,y,x_new)

Returns a vector of the size of y, which contains the interpolated y values that correspond to x_new using linear interpolation.

interp1(x,y,x_new, 'linear')

Returns a vector of the size of y, which contains the interpolated y values that correspond to x_new using linear interpolation.

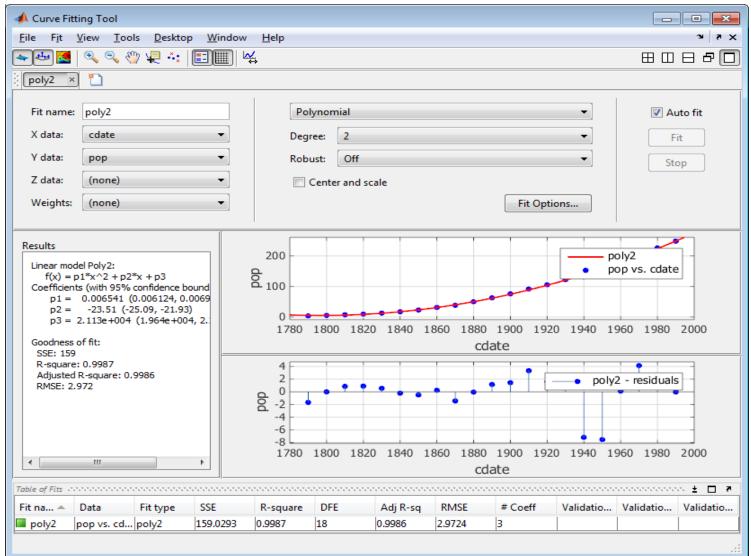
Linear Interpolation

Example: Given the following temperature measurements taken from the cylinder head in a new engine that is being tested for possible use in a race car.

Times, s	Temperature, F
0	0
1	20
2	60
3	68
4	77
5	110

 Linear Interpolation 	Times, s	Temperature, F
x=0:5;	0	0
y=[0,20,60,68,77,110];	1	20
	2	60
$y_1 = interp_1(x, y, 2.6);$	3	68
$y_2=interp_1(x,y,4.9);$	4	77
100 - 80 -	- 5	110
> 60 - 40 -	-	
$\begin{array}{c} 20 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	5	

Cubic-spline Interpolation


A cubic-spline is a smooth curve constructed to go through a set of points.

interpl(x,y,x_new,'spline')

Returns a vector which contains the interpolated y values that correspond to x_new using cubic-spline interpolation.

```
Example: x=0:5;
y=[0,20,60,68,77,110];
temp1=interp1(x,y,2.6,'spline');
Try this: temp2=interp1(x,y,[2.6,4.9],'spline');
```

Curve Fitting Tool

Curve Fitting Tool

Curve Fitting Toolbox software allows you to work in two different environments:

- An interactive environment, with the Curve Fitting app and the Spline Tool
- A programmatic environment that allows you to write objectoriented MATLAB code using curve and surface fitting methods.

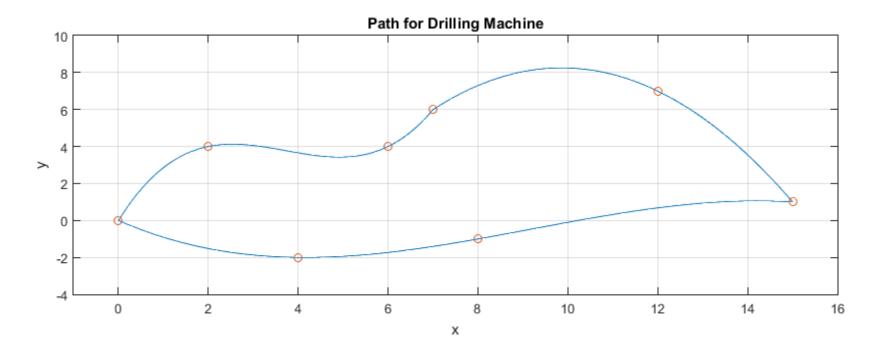
Curve Fitting Tool

cftool opens Curve Fitting app or brings focus to the app if it is already open.

 $\begin{array}{l} \textbf{cftool(x,y)} \\ \textbf{or more elements, and have the same number of elements.} \end{array} \\ \end{array} \\$

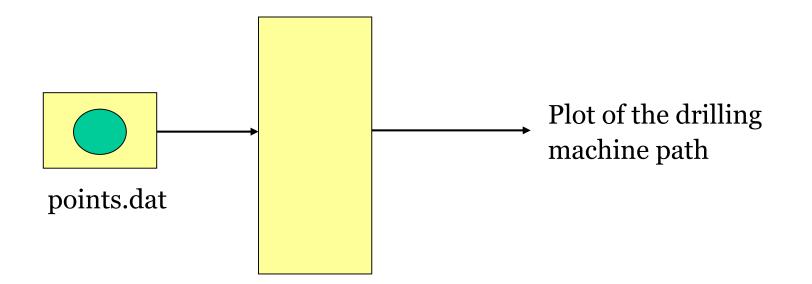
cftool(x, y, z) creates a surface fit to x and y inputs and z output.

 $\begin{array}{l} \mbox{cftool(} x, y, z, w \mbox{)} \end{array} \label{eq:cftool} \mbox{ creates a surface fit with weights w. w must be numeric and have the same number of elements as z} \end{array}$


cftool(filename) loads the Curve Fitting session in filename into Curve Fitting app.

Outline

- Data Regression
- Matlab Interpolation and Curve Fitting
- <u>Example</u>


Inputs/Outputs Description

Design a smooth curve, using cubic-spline interpolation, that can be used to guide a drilling machine to several location and then back to the original position.

Inputs/Outputs Description

The following I/O diagram shows that the input is a file containing the xy coordinates of the points over which the drilling machine must pass and its original position.

Inputs/Outputs Description

X X	y	code	Interpretation
0	0	0	home position
2	4	1	intermediate position
6	4	1	intermediate position
7	6	2	drill
12	7	1	intermediate position
15	1	3	release
8	-1	1	intermediate position
4	-2	1	intermediate position
0	O uez University © Dr. Alaa Kh	0	home position

Input file points.dat

📣 Import Wiz	ard	1.22				
-Select Colum	n Separator(s)					
© Comma	🔘 Space 🛛 Semicolo	n 💿 Tab 🔘 Other	r Number of text header lines: 0 🚔			
Preview of C:\Users\PC\Desktop\BSE225\L7-Sequential Algorithms\code\points.dat						
0	0	0	points			
2	4	1				
6	4	1				
12	7	1	2 2 4 1			
15	1	3	3 6 4 1			
8	-1	1	4 7 6 2			
4	-2	1	5 12 7 1			
0	0	0	6 15 1 3 7 8 1 1			
			7 8 -1 1 8 4 -2 1			
			9 0 0 0			
			-			
	III					
Help		< Back	Next > Finish Generate M-code Cancel			

Matlab Program

% Drilling Machine path

```
% read data file.
```

load points.dat;

```
x=points(:,1);
```

```
y=points(:,2);
```

code=points(:,3);

Matlab Program

```
%generates the three separate paths.
drill=find(code==2);
release=find(code==3);
lenx=length(x);
x1=x(1:drill);
                    y1=y(1:drill);
x2=x(drill:release);
y2=y(drill:release);
x3=x(release:lenx);
                         y3=y(release:lenx);
```

- Matlab Program
 - % Compute time increment and corresponding time sequences.

```
incr=min(abs(x(2:lenx)-x(1:lenx-1)))/10;
```

- t1=x(1):incr*sign(x(drill)-x(1)):x(drill);
- t2=x(drill):incr*sign(x(release)-
- x(drill)):x(release);

```
t3=x(release):incr*sign(x(lenx)-
```

```
x(release)):x(lenx);
```

- Matlab Program
 - % Compute splines
 - sl=interpl(x1,y1,t1,'spline');
 - s2=interp1(x2,y2,t2,'spline');
 - s3=interp1(x3,y3,t3,'spline');

Matlab Program

```
% Plot spline path.
plot([t1 t2 t3],[s1 s2 s3],[x1' x2' x3'],...
[y1' y2' y3'], '0'),...
title('Path for Drilling Machine'), ...
xlabel('x'),ylabel('y'), grid,...
axis([-1,16,-4,10])
```

• Program Run

